
22/9/2013	

1	

EH2750 Computer Applications in
Power Systems, Advanced Course.

Professor Lars Nordström, Ph.D.
Dept of Industrial Information & Control systems, KTH
larsn@ics.kth.se

Lecture 3

Acknowledgement

• These slides are based largely on a set of slides
provided by:

Professor Rosenschein of the Hebrew University
Jerusalem, Israel

and
Dr. Georg Groh, TU-München, Germany.

• Available at the Student companion site of the
Introduction to Multi Agent Systems book

Outline of the Lecture

• Repeating where we are right now

• Practical reasoning Agents (Ch 4)

• Reactive Agents (Ch 5)

• Agent concepts and JACK

What is an Intelligent Agent?

• The main point about agents is they are autonomous:
capable of acting independently, exhibiting control over
their internal state

• Thus: an intelligent agent is a computer system capable
of flexible autonomous action in some environment in
order to meet its design objectives

System

Environment

input
output

22/9/2013	

2	

Agent components

see : E → Per action : I → Ac next : I × Per → I

Beliefs, Desires & Intentions - BDI
• When we describe Intelligent Agents it is convenient to

talk about them as if they have:
-  Beliefs
•  Some image of the environment
•  E.g. Temperature measurement

-  Desires
•  Goals they wish to achieve
•  E.g Keep the temperature at the setpoint

-  Intentions
•  Actions that the agent can take
•  E.g Increase Temperature!
•  Subsequent step to a Intention is a Plan (set of actions)

–  Open hot water valve

Where are we right now?

• Chapter 2 describes the idea of agents that perform
tasks in an environment and sets some definitions

• Chapters 3, 4, & 5 describe three different approaches
to describing and developing the apparent Intelligence
in the agents.

-  Chapter 3 – Deductive Reasoning Agents
-  Chapter 4 – Practical Reasoning Agents
-  Chapter 5 - Reactive (and Hybrid Agents)

So, how do we make the agent think?

• One straightforward way is to use logic
• Program the agent to be completely logical and use
deduction to prove it’s way to chosing which action to
perform.

function action(i:I) returns α:A {
 for each α in A do {
 if(i using ρ proves Do(α) {
 return α
 }
 }
 for each α in A do {
 if(i using ρ does not prove NOT(Do(α))) {
 return α
 }
 }
 return null

}

22/9/2013	

3	

Example: The Vacuum World

•  Agents database-rules:

)(),(),(suckDoyxDirtyxIn →∧

Objective:

Traversal:	

and for all other rows accordingly

i i i

ρ

Deductive Agents – does that work?
• The idea of proving theorems as a way of making

decisions is logically sound and rigouros

Two challenges remain:
1.  It is time consuming to program
2.  It is time consuming to execute

• Applied in a human setting it is also rather rigid.
Imagine a theorem:
-  I will buy the cheapest copy of Wooldridge’s book.

• Requires you to find a copy, check the price
-  Find next copy check price
-  Etc. until you have found all copies of the book

• People tend to use Practical reasoning

Outline of the Lecture

• Repeating where we are right now

• Practical reasoning Agents (Ch 4)

• Reactive Agents (Ch 5)

• Agent concepts and JACK

Practical Reasoning

• Human practical reasoning consists of two activities:
-  deliberation

deciding what state of affairs we want to achieve
- means-ends reasoning

deciding how to achieve these states of affairs
• The outputs of deliberation are intentions

What are
possible
things I
could do?

What is
the best

way to do
it?

Inten-
tions Plans

22/9/2013	

4	

	

What is deliberations?

•  Beliefs, Desires, Intentions: Symbolically represented:

,...},,{ BBBBel ʹ′ʹ′ʹ′= ,...},,{ DDDDes ʹ′ʹ′ʹ′= ,...},,{ IIIInt ʹ′ʹ′ʹ′=

•  Deliberation = <option, filter>

DesIntBeloptions 222: →×
IntIntDesBelfilter 2222: →××

•  Filtering function filter selects intentions
(commitments)

•  Option generation function option generates
desires (goals)

•  Belief revision function brf updates beliefs
BelBel Perbrf 22: →×

What is Means-End Reasoning?

• Basic idea is to give an agent:
-  representation of goal/intention to achieve

-  representation actions it can perform
-  representation of the environment

and have it generate a plan to achieve the goal
• Essentially, this is

 automatic programming

goal/
intention/
task

state of
environment

possible
action

planner

plan to achieve goal

Planning is a big thing in AI Planning

• Question: How do we represent. . .
-  goal to be achieved
-  state of environment
-  actions available to agent
-  plan itself

22/9/2013	

5	

The Blocks World

• We’ll illustrate the techniques with reference to the blocks world
Contains a robot arm, 3 blocks (A, B, and C) of equal size, and a
table-top

A

B C

The Blocks World Ontology

• To represent this environment, need an ontology
 On(x, y) obj x on top of obj y
 OnTable(x) obj x is on the table
 Clear(x) nothing is on top of obj x
 Holding(x) arm is holding x

• The closed world assumption is implicitly valid.

The Blocks World

• Here is a representation of the blocks world described
above:

 Clear(A)
 On(A, B)
 OnTable(B)
 OnTable(C)

• Use the closed world assumption: anything not stated
is assumed to be false

A

B C

4-20

The Blocks World

• A goal is represented as a set of formulae
• Here is a goal:

 OnTable(A) ∧ OnTable(B) ∧ OnTable(C)

A B C

22/9/2013	

6	

The Blocks World

• Actions are represented using a technique that was
developed in the STRIPS planner

• Each action has:
-  a name

which may have arguments
-  a pre-condition list

list of facts which must be true for action to be executed
-  a delete list

list of facts that are no longer true after action is performed
-  an add list

list of facts made true by executing the action
Each of these may contain variables

The Blocks World Operators

• Example 1:
The stack action occurs when the robot arm places
the object x it is holding is placed on top of object y.

 Stack(x, y)
 pre Clear(y) ∧ Holding(x)
 del Clear(y) ∧ Holding(x)
 add ArmEmpty ∧ On(x, y)

A

B

The Blocks World Operators
• Example 2:
The unstack action occurs when the robot arm picks
an object x up from on top of another object y.

 UnStack(x, y)
 pre On(x, y) ∧ Clear(x) ∧ ArmEmpty
 del On(x, y) ∧ ArmEmpty
 add Holding(x) ∧ Clear(y)

Stack and UnStack are inverses of one-another.

A

B

The Blocks World Operators
• Example 3:
The pickup action occurs when the arm picks
up an object x from the table.

 Pickup(x)
 pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty
 del OnTable(x) ∧ ArmEmpty
 add Holding(x)

• Example 4:
The putdown action occurs when the arm
places the object x onto the table.
 Putdown(x)

 pre Holding(x)
 del Holding(x)
 add Clear(x) ∧ OnTable(x) ∧ ArmEmpty

22/9/2013	

7	

A Plan

• What is a plan?
A sequence (list) of actions, with variables replaced by
constants.

I G
a1

a17

a142

Outline of the Lecture

• Repeating where we are right now

• Practical reasoning Agents (Ch 4)

• Reactive Agents (Ch 5)

• Agent concepts and JACK

Reactive Architectures

• There are many unsolved (some would say insoluble)
problems associated with symbolic AI

• These problems have led some researchers to question
the viability of the whole paradigm, and to the
development of reactive architectures

• Although united by a belief that the assumptions
underpinning mainstream AI are in some sense wrong,
reactive agent researchers use many different
techniques

• In this presentation, we start by reviewing the work of
one of the most vocal critics of mainstream AI: Rodney
Brooks

22/9/2013	

8	

Purely Reactive Agents (Repeat)

• Some agents decide what to do without reference to their
history — they base their decision making entirely on the
present, with no reference at all to the past

• We call such agents purely reactive:

• A thermostat is a purely reactive agent

The Subsumption Architecture

• A subsumption architecture is a hierarchy of task-
accomplishing behaviors

• Each behavior is a rather simple rule-like structure
• Each behavior ‘competes’ with others to exercise
control over the agent

• Lower layers represent more primitive kinds of
behavior (such as avoiding obstacles), and have
precedence over layers further up the hierarchy

• The resulting systems are, in terms of the amount of
computation they do, extremely simple

• Some of the robots do tasks that would be
impressive if they were accomplished by symbolic AI
systems

5-31

Layered Control in the Subsumption
Architecture	

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985	

Steels’ Mars Explorer
• Steels’ Mars explorer system, using the subsumption

architecture, achieves near-optimal cooperative performance in
simulated ‘rock gathering on Mars’ domain:
The objective is to explore a distant planet, and in particular, to
collect sample of a precious rock. The location of the samples is
not known in advance, but it is known that they tend to be
clustered.

22/9/2013	

9	

Steels’ Mars Explorer Rules

• For individual (non-cooperative) agents, the lowest-level
behavior, (and hence the behavior with the highest
“priority”) is obstacle avoidance:

 if detect an obstacle then change direction (1)

• Any samples carried by agents are dropped back at the
mother-ship:

 if carrying samples and at the base
 then drop samples (2)

• Agents carrying samples will return to the mother-ship:
 if carrying samples and not at the base
 then travel up gradient (3)

Steels’ Mars Explorer Rules

• Agents will collect samples they find:
 if detect a sample then pick sample up (4)

• An agent with “nothing better to do” will explore
randomly:

 if true then move randomly (5)

Outline of the Lecture

• Repeating where we are right now

• Practical reasoning Agents (Ch 4)

• Reactive Agents (Ch 5)

• Agent concepts and JACK

What is JACK

JACK Intelligent Agents is an environment
for building, running and integrating
commercial Java-based multi-agent
software using a component-based
approach.

22/9/2013	

10	

JACK Architecture

Agent Capability

BeliefSet

Event

Plan Event

Plan

has

post

use

data
member

handle
send

use

Outline of the Lecture

• Repeating where we are right now

• Practical reasoning Agents (Ch 4)

• Reactive Agents (Ch 5)

• Agent concepts and JACK

